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DICTIONARY LEARNING AND SPARSE CODING FOR UNSUPERVISED CLUSTERING

Pablo Sprechmann and Guillermo Sapiro

University of Minnesota

ABSTRACT

A clustering framework within the sparse modeling and dictionary
learning setting is introduced in this work. Instead of searching
for the set of centroid that best fit the data, as in k-means type
of approaches that model the data as distributions around discrete
points, we optimize for a set of dictionaries, one for each cluster,
for which the signals are best reconstructed in a sparse coding man-
ner. Thereby, we are modeling the data as the of union of learned
low dimensional subspaces, and data points associated to subspaces
spanned by just a few atoms of the same learned dictionary are clus-
tered together. Using learned dictionaries makes this method robust
and well suited to handle large datasets. The proposed clustering
algorithm uses a novel measurement for the quality of the sparse rep-
resentation, inspired by the robustness of the ¢; regularization term
in sparse coding. We first illustrate this measurement with examples
on standard image and speech datasets in the supervised classifi-
cation setting, showing with a simple approach its discriminative
power and obtaining results comparable to the state-of-the-art. We
then conclude with experiments for fully unsupervised clustering on
extended standard datasets and texture images, obtaining excellent
performance.

Index Terms— Clustering, sparse representations, dictionary
learning, subspace modeling, texture segmentation.

1. INTRODUCTION

In recent years, sparse representations have received a lot of attention
from the signal processing community. This is due in part to the fact
that an important variety of signals such as audio and natural images
can be well approximated by a linear combination of a few elements
(atoms) of some (often) redundant basis, usually called dictionaries.
See [1] and references therein for a review.

Sparse modeling aims at learning these non parametric dictio-
naries form the data itself. Several algorithms have been developed
for this task, e.g., the K-SVD and the method of optimal directions
(MOD) (see for example [2] and references therein). Recent publi-
cations in a wide spectrum of signals and applications have shown
that this approach can be very successful, leading to state-of-the art
results, e.g., in image restoration and denoising, texture synthesis,
and texture classification.

In the classification setting, this class of algorithms learn dic-
tionaries from the labeled training dataset and use the features of
the sparse decomposition of the testing signal for classification (see
[2, 3, 4] and references therein). One contribution of our work is to
extend these classification strategies to the fully unsupervised setting
of data clustering.

Work supported by ONR, NGA, ARO, DARPA, and NSF. We thank I.
Ramirez, F. Lecumberry, and J. Mairal for very useful discussions and fun-
damental software.

In this paper we propose an algorithm for clustering datasets
that are well represented in the sparse modeling framework with a
set of learned dictionaries. The main idea is, given the number of
clusters K, we find the optimal K dictionaries for representing the
data, and then associate each signal to the dictionary for which the
“best” sparse decomposition is obtained.! This is achieved by

K
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where D; € R™*¥i is the k;-atoms dictionary associated with the
class C;, x; € R™ are the data vectors, and R is a function that mea-
sures how good the sparse decomposition for the signal x; under the
dictionary D; is. In the general case, different dictionaries may have
different number of atoms, k; might be cluster dependent. This prob-
lem is closely related with the k-g-flat algorithm that aims at finding
the closest k g-dimensional flats to a dataset [7]. However, there are
major differences between the two. In particular, the framework here
proposed, following the sparse representation approach, does not as-
sume a pre-defined, or even constant across classes, (q) dimension,
resulting in a richer space for representing and clustering the signals.

We propose a measurement R for the quality of the sparse rep-
resentation that naturally takes into account both the reconstruction
error and the sparseness (complexity) of the representation on the
corresponding learned dictionary. In practice this measurement has
shown enormous discrimination power. To further show this we per-
formed experiments in the supervised classification setting using la-
beled data; we first learned a dictionary for each class, and then clas-
sify each testing signal according to this measure. This very simple
approach gives results comparable with the state-of-the-art for sev-
eral benchmark datasets.

The proposed clustering algorithm minimizes (1) using a k-
means type of approach that learns a dictionary for each cluster
and refines it through the iterations. Experimentally, excellent per-
formance is obtained, both on standard datasets and on texture
segmentation tasks.

In the unsupervised clustering case, the initialization is very im-
portant for the success of the algorithm. Due to the cost associated
with the procedure, repeating random initializations is practically
impossible. Thus a “smart” initialization is needed. We propose an
approach that combines sparse coding with spectral clustering [8].

Similar ideas to the ones here proposed where previously em-
ployed for subspace clustering [9, 10], clustering using the so-called
{1-graph by Huang and Yan (see description in [11]), and label
propagation [12]. In contrast with our proposed dictionary learning
framework, these very inspiring approaches all use the data itself as

Note that it is not that each data point belongs to a union of subspaces as
for example in [5, 6]. Comparing with block/group sparsity, here a single dic-
tionary (block) is selected per data point, and the point is sparsely represented
(subspace) with atoms only from this dictionary.



dictionary, sparsely representing every data point as a linear combi-
nation of the rest of the data. Such representation is computationally
expensive (virtually unusable for datasets of thousands of points). In
addition, the large redundancy and coherence expected from using
the data itself as dictionary is prompt to make the sparse coding
very unstable, it is well know that such coding techniques strongly
depend on the internal coherence of the dictionary. Furthermore,
the performance of these methods decreases when the number of
clusters grows. We propose as part of our framework a method to
bypass this problem that divides the clustering problem into several
binary ones. In a natural way, we use the energy function to decide
which partition to choose. Such binary division framework is not so
natural for these other related clustering methods.

The remainder of this paper is organized as follows: In Section 2
we briefly summarize the main ideas of sparse coding and dictionary
learning. In Section 3 we define the measure R and analyze its dis-
criminative power. In Section 4 we present the proposed clustering
algorithm and in Section 5 the corresponding experimental results
for clustering and texture segmentation. Finally, we conclude the
paper in Section 6.

2. SPARSE CODING AND DICTIONARY LEARNING

Sparse coding means to represent a signal as a linear combination of
a few atoms of a given (often overcomplete) dictionary. Mathemati-
cally, given a signal x € R™ and a dictionary D € R™**, the sparse
representation problem can be stated as

min ||a|lo  s.t. x = Da, 2

where ||c|o is the “fo-norm™ of the coefficient vector a € RF,
the number of non-zero elements. This problem is NP-hard, thus is
commonly approximated substituting the ¢1-norm in Equation (2).
In the noisy case the equality constraint must be relaxed as well. An
alternative to this is then to solve a Lasso-type problem,

mion—DozH%—&-AHMh, 3

where ) is a parameter that balances the tradeoff between reconstruc-
tion error and sparsity. It is a well known fact that in general the ¢;
constraint induces sparse solutions for the coefficient vectors «.. Fur-
thermore, this is a convex problem that can be solved very efficiently
using for example the LARS-Lasso algorithm [13]. This alternative
has also been shown to be more stable than the ¢y approach in the
sense that in the latter, small variations in the input signal can pro-
duce very different active sets (the set of non-zero coefficients in a,
or selected atoms from D).

Now, what about the actual dictionary D? State-of-the-art re-
sults have shown that it should in general be learned from data.
Given a set of signals {x; };=1...m in R", the goal is to find a dictio-
nary D € R™ ¥ such that each signal in the set can be represented
as a sparse linear combination of its atoms. In this work we use
an ¢; variation of MOD following [14]. The algorithm learns the
dictionary by solving the following optimization problem:

m
min > [jxi — Daulf3 + Allaillr, “4)
i=1

D {aiti=1..m 2

restricting the atoms to have unit Euclidean norm. The optimization
is carried out using an iterative approach that is composed of two

2 Although this is normally refered as a norm counting the non-zero ele-
ments of a vector, it is actually a pseudo-norm.

[ Dataset | Proposed [ A [ B [ C [ SVM [ kNN |
MNIST 1.26 3.41 1.05 - 1.4 5.0
USPS 4.14 3.56 | 438 | 6.05 4.2 52
ISOLET 3.27 4.3 34 - 33 8.7

Table 1. Error rate (in percentage) for the classification algorithm dis-
cussed in Section 3. We present comparisons with recently published ap-
proaches. MNIST: (A) is the best reconstructive method presented in [16],
while (B) is the best discriminative one. USPS: (A) is the best reconstructive
and (B) is the best discriminative methods reported in [16]. (C) is the best
result obtained in [17]. ISOLET: (A) is the supervised k-q-flats and (B) is the
k-metrics in [18]. We also compare with a SVM with Gaussian kernel and
the Euclidean k-NN.

(convex) steps: the sparse coding step on a fixed D and the dictio-
nary update step with a fixed active set.

3. THE SPARSE REPRESENTATION QUALITY R

A common approach when using dictionaries for classification is to
train class specific dictionaries using labeled data and then assign
each testing signal to the class for which the best reconstruction is
obtained [2, 4]. The measure employed for this task is often the
reconstruction error, R(x, D) = ||x—Da/||3, where o is the optimal
coefficient vector in the sparse coding. While this strategy leads to
very good results, it does not take into account the actual sparsity
of the reconstruction. Suppose that we have two dictionaries for
which almost the same reconstruction error is obtained, but one of
them requires double the atoms than the other. In such a situation
one would rather select the dictionary that gives the sparsest solution
(simplest following Akaike’s Information Principle [15]), even if the
reconstruction error is slightly bigger.

In practice, this problem can be addressed using a small pre-
defined sparsity level L in an £o approach. This strategy is not longer
valid when the convex relaxation of Equation (3) is employed. In this
situation comparing the reconstruction errors alone has little mean-
ing. We propose then to use the actual cost function in the Lasso
problem as a measure of performance, as used in the dictionary
learning (4), R(x, D) = ||x — Da||3 4+ A|||1, where as before
« is the optimal coefficients vector. This alternative naturally takes
into account both the reconstruction error and the complexity of the
sparse decomposition. The reconstruction error measures the qual-
ity of the approximation while the complexity is measured by the ¢
norm of the optimal a.

Let X;,72=1,..., K, be acollection of K (labeled) classes of
signals and let D; be the corresponding dictionaries trained for each
of them independently following for example (4).> The class jo for
a given new signal x is found by solving jo = argmin R(x,D;).

j=1,....K
This procedure is very simple and has only two parameters: the
penalty parameter A and the size of the dictionaries k. Both can
be selected via cross-validation.

As a way to evaluate the discriminatory power of the measure
just introduced, which will also be used for the proposed unsuper-
vised clustering approach, we test this simple classification method
with standard datasets, the MNIST and USPS digit datasets and the
ISOLET data that consists of 617 audio features extracted from 200
speakers saying each letter of the alphabet twice. We used in every
case the usual training/testing split. In Table 1 we present the ob-
tained results. We compare our results with several much more so-
phisticated classification algorithms. The results obtained are com-
parable and sometimes even better. We also compare with the stan-
dard Euclidean k-NN and with SVM with a Gaussian kernel. In all

3See also [2] for cross-training.



our experiments we used a penalty parameter A = 0.1. The size of
the dictionary depends on the number of training samples as well as
the intrinsic complexity of the data. For the MNIST we report results
for a dictionary with £ = 800, k = 300 for the USPS digit dataset,
and k = 100 for the ISOLET. In the last case the training sample is
very small, making it impossible to choose larger dictionaries.

One could think of using the whole training datasets as a dictio-
naries for each class as with the approaches mentioned in the intro-
duction [9, 10, 11]. In that case, in all our experiments the error rates
obtained are not better than the ones reported in Table 1. Using the
data as dictionaries has the disadvantage that the computational cost
of the classification is prohibited,* and the method is highly suscep-
tible to label errors due to the high coherence of the “dictionary.”

4. DICTIONARY LEARNING FOR CLUSTERING

We now proceed to present the main contribution of this pa-
per, namely, extending the dictionary learning and sparse coding
frameworks to unsupervised clustering. Given a set of signals,
{x;j}j=1..m in R™, and the number of clusters/classes, K} we
want to find the set of K dictionaries D; € R™*% ¢ =1,... K,
that best represents the data. We formulate this as an energy mini-
mization problem of the form of Equation (1), and use the measure
proposed in Section 3,

K
min Y Y min [[x; — Diay|[3 + Alaglli, )
D;,C; g

i=1 X €C;

where as before, the atoms of all the dictionaries are restricted to
have unit norm. The optimization is carried out iteratively using
a Lloyd’s-type algorithm solving one problem at a time: Assign-
ment step: The dictionaries are fixed and each signal is assigned
to the cluster for which the best representation is obtained: Cj, :=
{x FR(x, Dj,) < R(x,Dy) Vi=1,.. .,K}. Update step: The new
dictionaries are computed fixing the assignations found in the previ-
ous step. This is the dictionary learning problem (4).

The algorithm stops when the relative change in the energy is
less than a given constant. In practice few iterations are needed to
reach good results. While the energy is being reduced at every step,
there is no guarantee of arriving to a global minimum. In this setting,
repeated initializations are computationally very expensive, thus a
good initialization is required. This is explained next.

4.1. Initial clusterization

The initialization for the algorithm presented in the previous section
can be given as a set of K dictionaries or as an initial partition of the
data, this is the C; sets. We propose two closely related algorithms
one corresponding to each of these two alternatives. In both cases
the main idea is to construct a similarity matrix and use it as the
input for a spectral clustering algorithm.

Let Dy € R™**0 be an initial dictionary, e.g., trained to recon-
struct the data for the whole (unlabeled) set X := [x1,...,Xm]. For
each signal x; we have the corresponding sparse representation «;,
lets define A = [au, . .., aum] € R¥OX™, Two signals belonging to
the same cluster are expected to have decompositions that use sim-
ilar atoms. Thus one can measure the similarity of two signals by
comparing the corresponding sparse representations. Inversely, the

4With our method, there is the cost of learning the dictionaries, but this is
only performed once off-line before the classification.
5When K is over-estimated, a micro-detailed partition is observed.

similarity of two atoms can be determined by comparing how many
signals use them simultaneously, and how they contribute, in their
sparse decomposition. We compute two matrices representing each
one of these cases respectively:

Clustering the signals: Construct a similarity matrix S; € R™*™,
S::=|A|T|A|

Clustering the atoms: Construct a similarity matrix So € RFoxko
S, := |A]|A|T.

In both cases the similarity matrix obtained is positive semidefi-
nite and can be associated with a graph, G := {X,S:} and G5 :=
{D, S>}, where the data or the atoms are the sets of vertexes with
the corresponding S; as edge weights matrixes. This graph is par-
titioned using standard spectral clustering algorithms to obtain the
initialization for the algorithm described in the previous section.

As we mentioned before, (G is closely related with the ¢; -graph.
In that case, the weights of the graph are determined using the sparse
decomposition of the signals with the data itself as a dictionary.
When the number of signals m is large, the computational cost of
constructing the similarity matrix is too expensive. Also the spectral
clustering algorithm requires the computation of the largest singular
values (and corresponding singular vectors), which is also computa-
tionally demanding when m is large (although not so demanding if
only a few eigenvectors are needed). In the case of G2, clustering
the atoms bypasses these difficulties: the size of S, depends only
on the significantly smaller size of the initial dictionary ko. This pa-
rameter does not depend on the amount of data, it just needs to be
large enough to model it properly, and is often just in the hundreds.
Note that the obtained sub-dictionaries may have different cardinali-
ties (different k;), reflecting different complexities of the associated
clusters.

When the number of clusters, K, is large, the performance of the
initial clusterization decreases. We propose a more robust initializa-
tion. Starting with the whole set as the only partition, at each itera-
tion we subdivide in two sets each of the current partitions, keeping
the division that produces the biggest decrease in the cost energy de-
fined in Equation (5). The procedure stops when the desired number
of clusters is reached. This can be applied for any of the two graphs
presented in this section, and such partition is consistent with the
energy driving the clustering.

Finally, let us make an important observation. Let’s consider
the ideal situation in which every signal in the K clusters can be
exactly reconstructed as a sparse linear combination of the atoms
of a dictionary, and that the subspace that they span (using all the
atoms) are independent. Assume that the initial dictionary is com-
posed by K (redundant) sub-dictionaries, Do = [D1, ..., Dx], one
corresponding to each cluster in the dataset. Then, given a signal x
belonging to one of them, it is easy to show that the optimal « in the
{7 -relaxation of problem (2) with this Do, will use only atoms from
the correct block of the initial dictionary, producing K connected
components in both graphs G and Go. In that situation a spectral
clustering technique will successfully separate the clusters. A proof
of a similar result is presented in [10].

5. CLUSTERING RESULTS

We now apply the proposed classification algorithm to several clus-
tering problems and texture segmentation. We clustered the digits
form O to 4 ()X = 5) using the testing set of MNIST and the train-
ing set of USPS. We also clustered the last six letters of ISOLET,
K = 6, combining the standard training and testing sets.

For the USPS and the MNIST, we used an initial dictionary of
ko = 500 atoms, and ko = 560 (80x 7) for ISOLET. We used Gi1 for
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Fig. 1. Results obtained for texture segmentation using the proposed algo-
rithm. The images (a)-(c) are mosaics from the Brodatz database. The ob-
tained results are shown in figures (d)-(f), having 1.74%, 0,25% and 4.25%
of misclassified pixels respectively (such misclassifications appear at the re-
gions boundaries, corresponding patches include class mixtures). In images
(g) and (h) we show selected atoms of the final sub-dictionaries obtained
for image (a). The texture in the circle required k1 = 82 atoms, while the
other one received k2 = 118, which goes along with the intuition of larger
complexity for this texture. The dictionary learned in the initialization had
K x 100 atoms, where again K is the number of textures (clusters) in the
image.

initialization, using during the iterations dictionaries of 200 and 100
atoms respectively. In all the cases it was easy to identify the clusters
with one of the classes. For the MNIST we had a misclassification
rate of 1.44%, for the USPS we obtained 1.6% misclassification (and
7.2% for digits 0-8), and 13% for ISOLET. In the last case most
errors where confusions between the letters U-W and T-Z, which
have very similar sounds. Note that these results are overall not far
from those obtained with supervised learning and classification.

Finally, we use our clustering algorithm for the texture segmen-
tation problem. The approach is related to the one used in [4] for
the supervised case. Overlapped 16 x 16 patches were extracted
from the original images and used as input signals to our algorithm.
Since the borders on the mosaic images are soft, before each iteration
(thus, before recomputing the dictionaries), we applied a Gaussian
filter to smooth the segmented regions. In Figure 1 we show some
of the results. The number of patches extracted was on the order of
several thousands, so the initialization with G2 was applied. The al-
gorithm gave sub-dictionaires that have a cardinality that intuitively
reflects the complexity of the corresponding texture (in other words,
k; was not constant). We got very low rates of miss-clustered pix-
els, for example in image (b) we got 0.25% which is better than the
0.37% obtained in [2] for the supervised case (which was, as far as
we know, the best reported result in the literature for that image).

We observed that best results are obtained for all the experiments

when the initial dictionaries in the learning stage are constructed by
randomly selecting signals from the training set. If the size of the
dictionary compared to the dimension of the data is small, is better
to first partition the dataset (using for example Euclidean k-means)
in order to obtain a more representative sample.

6. CONCLUDING REMARKS

A framework for unsupervised clustering based on dictionary learn-
ing and sparse representations was introduced in this paper. The
basic idea is to simultaneously learn a set of dictionaries that opti-
mally represent each one of the clusters. Toward this goal, we intro-
duced a new measurement of representation quality and an initializa-
tion procedure that combines sparse coding, dictionary learning and
spectral clustering. While here we concentrated on hard clustering,
soft-clustering can be obtained as well in this framework.

We are currently pursuing this work in a number of directions,
including the incorporation of group incoherence terms [5, 19].
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